Имея степени простого количества (причем некоторые степени могут быть кратными) мы встречаемся со структурностью количества, когда необходимо определить некоторые базисные элементы, с помощью которых путем линейной комбинации этих элементов мы получаем любое конечное количество.
Отражение такой структурности снова возможно в двух вариантах. В возрасте до трех лет ребенок упорядочивает элементы, имеющие разный уровень сложности. В возрасте от 3 до 6 лет это уже связано с разработкой логических средств отражения. Ребенок разрабатывает инструмент логического отражения структорности (порядок расположения конечных количеств разной степени сложности). Кроме того, он создает способ структурирования и форму представления.
Структурирование конечного количества представляет пропедевтику не только для понятия «цифра» в символическом изображении, но и пропедевтику таких понятий, как «многочлен», «вектор».
Форма второй и первой степени конечного количества определяется видом первого элемента и способом движения (способом соединения количеств). В частности, такой формой может быть не только квадрат, как геометрическая фигура, но и другие геометрические фигуры.
Рассматривая несколько конечных количеств, являющихся разными степенями разных простых количеств мы снова приходим к идее выражения количества с помощью других количеств. В математике конечных количеств появляется новый этап-этап конструирования.
Формирование навыков волевой регуляции у воспитанников детского дома
подросткового возраста, склонных к делинквентному поведению
Воля есть сознательное регулирование человеком своего поведения и деятельности, связанное с преодолением внутренних и внешних препятствий. Воля как характеристика сознания и деятельности появилась вместе с возникновением общества, трудовой деятельности. Воля является важным компонентом психики чело ...
Введение отрицательных чисел. Определения свойств
действий над целыми числами
Следующее расширение понятия числа – знакомство учащихся с отрицательными числами. С методической стороны введение отрицательных чисел особых затруднений не представляет, т.к. дети часто встречаются в жизни. Наибольшую трудность в их изучении представляет обоснование действии над ними. Введение пон ...
Первый этап в математике конечных количеств
Математика конечных количеств начинается с понимания конечного количества. Формирование такого понимания достигается благодаря отношению «одинаковое-разное». Объединяя группу предметов в единое целое ребенок видит одинаковое в них. Такая одинаковость рождает первое качественное состояние в содержан ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.