Понятия числа

Преподавание вопросов связанных с развитием учения о числе учитель строит таким образом, чтобы ясна была связь понятий равенства, сумма и произведение, с одной стороны, и понятие числа, с другой. Таким образом, для того чтобы новые числа были равноправными, необходимо введение определения:

понятие равенства и установление критерия сравнения новых чисел между собой и с ранее известными числами;

понятие суммы;

понятие произведения.

Необходимо показать, что новые числа подчиняются всем законам арифметических действий, установленным для изучаемых ранее числам. Целесообразность вводимых определений иллюстрируют рассмотрением конкретных примеров. Каждый этап развития числа состоит из: 1) мотивировки (алгебраический или алгебраический; например, появление отрицательных чисел – алгебраический, дробных чисел - практический); 2) подтверждение.

Изучение арифметики натуральных чисел основано на наглядности. Учащиеся должны твердо усвоить, что любое натуральное число может быть изображено точкой на координатном луче, но не всякой точке на этом луче отвечает натуральное число. Этот последний факт готовит учащихся к пониманию необходимости введения новых чисел. Учащиеся знакомятся с одним из свойств множества натуральных чисел – бесконечностью. При изучении законов арифметических действий, для избегания формализма необходимо отметить их теоретическое значение. В частности, коммутативный и ассоциативный законы умножения целесообразно связать с геометрическим материалом (вычислением площадей прямоугольников, объёмом прямоугольных параллелепипедов).

Смотрите также:

Введение иррационального числа. Методическая схема введения действительного числа
Следующее расширение понятия числа – иррациональное число. В соответствии с построением множества действительных чисел по Дедекинду на множестве рациональных чисел существуют только три вида сечений: 1) в В нет наибольшего, в В` наименьшее(деление множества рациональных чисел по числу, например,2); ...

Диагностика уровня сформированности вычислительных навыков младших школьников при изучении законов и свойств арифметических действий
Мы проводили эксперимент на базе 2 класса МОУ Стеженская СОШ Алексеевского района Волгоградской области (программа «Школа России»). Суть эксперимента заключалась в том, чтобы практически проверить выдвинутую нами гипотезу, а именно, если при изучении законов и свойств арифметических действий исполь ...

Преимущества использования игр в обучении письму в младших классах
Проблемы обучения письменной коммуникации вызывают все больший интерес среди методистов и учителей-практиков. Так, Н.К. Лапшова, рассматривая письмо «как методическую категорию», отмечает, что письмо «всегда было дискриминируемо в учебном процессе как вспомогательный вид речевой деятельности». По е ...

Приёмы и методы запоминания

Приёмы и методы запоминания

На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.

Категории

Copyright © 2025 - All Rights Reserved - www.newlypedagog.ru