Сравнение материальных и идеальных элементов по величине - фундаментальный способ освоения действительности и научного исследования. Часто вещи сравниваются по той или иной числовой величине: города - по численности населения, товары - по цене, люди - по росту или весу и т. п. Столь же привычно сравнение в науке. Достаточно назвать математическое направление, в котором изучаются числовые и функциональные неравенства. В математике, во-первых, сравниваются действительные (вещественные) числа, затем: линии - по длине, плоские фигуры - по площади, числовые функции - поточечно, множества - по мощности и т. д. Перечисленные примеры имеют общую формальную структуру - порядковую, элементы в них связаны отношением квазипорядка (несколько более широким, чем отношение порядка).
Современная математика - структурная наука, изучающая структуру сущего (реального и идеального), отображаемую в общенаучных, философских категориях количества, формы, меры. Точнее, математика изучает математические структуры, т. е. множества с заданными на них операциями и отношениями. На языке математических структур и выражаются разнообразные проявления категорий количества, формы и меры. Подчеркнем, что математические структуры определяются и изучаются на языке теории множеств - фундаменте классической математики последнего столетия.
В середине XX в. группа французских математиков под псевдонимом Никола Бурбаки выделила три типа математических структур - алгебраический, порядковый и топологический. В своей знаменитой концептуальной статье 1948 г. «Архитектура математики» Бурбаки назвали математику учением о математических структурах. Многие конкретные математические объекты относятся к одному из этих типов моноструктур или являются их естественным переплетением. Методологические аспекты структурного характера математики отражены в.
Исходным порядковым понятием служит отношение порядка, т. е. бинарное отношение на множестве, удовлетворяющее свойствам рефлексивности, транзитивности и антисимметричности. А базовым порядковым объектом является упорядоченное множество как множество с определенным на нем отношением порядка. Тем самым изучение порядковой структуры тесно связано и опирается на понятие бинарного отношения на множестве. Одна из возможных методик изучения бинарных отношений предложена автором.
Некоторые ученые (например, психолог Ж. Пиаже) правомерно считают, что основные типы математических структур соответствуют подобным им психологическим структурам и интеллектуальным способностям человека. Это вполне согласуется с метафизическим принципом единства мира, гармоничным сосуществованием его материальной, идеальной и психической граней. Поэтому актуальной задачей математического образования является формирование и развитие абстрактного структурного мышления путем изучения важнейших математических структур.
Порядковая структура справедливо относится к наиважнейшим математическим структурам. Она составляет неотъемлемую часть дискретной математики, входит в математические основы компьютерных наук. Можно говорить о порядковомподходе в математических исследованиях и даже о порядковом мышлении. Многие упорядоченные множества, встречающиеся в математических теориях и их приложениях, являются решетками, т. е. их конечные подмножества обладают точными гранями. Различные математические объекты изучаются с помощью решеток своих подобъек- тов и конгруэнций. В этом заключается теоретико-решеточный метод исследования в современной математике, позволяющий более полно охватить изучаемые математические объекты, выявить их новые свойства и связи.
По сравнению с алгебраическим и топологическим типами структур порядковая структура практически не изучается ни в школе, ни в вузе (иногда приводится определение и несколько простейших примеров). Поэтому мы в спецкурсе «Основные математические структуры», предназначенном студентам математических специальностей, отводим изучению упорядоченных множеств заметное место (мы рассматриваем еще два типа фундаментальных структур - структуры инцидентности и пространства с мерой). Мало кто из преподавателей математики задумывается над тем, что НОК и НОД натуральных чисел, объединение и пересечение множеств, дизъюнкция и конъюнкция высказываний суть примеры общих порядковых операций sup и inf, показывающие универсальность порядкового языка, терминологии и обозначений, принятых в теории упорядоченных множеств.
Различные упорядоченные структуры служат богатым материалом для спецкурсов, курсовых и выпускных работ, для исследований.
Автор данной статьи является активным сторонником и популяризатором специального изучения порядковой структуры, неоднократно выступал с научно-методическими докладами, читал спецкурсы для студентов и вел кружковые занятия со школьниками на эту тему.
Индивидуальные особенности познавательной сферы учащихся
Решение проблемы успешного учения – в развитии индивидуального стиля учения. Деятельность человека является комплексной и не сводится только к врожденным или алгоритмическим процессам. Когнитивные структуры психики подвижны и зависят от многих факторов. Когнитивный стиль – это результат взаимодейст ...
Основные виды нарушения развития и психолого-педагогическая характеристика
детей дошкольного возраста с задержкой психического развития
В настоящее время наиболее актуальной проблемой является теория и практика детской дошкольной коррекционной педагогики и специальной психологии. Перед медико-психолого-педагогическими службами стоит задача углубленного изучения особенностей психического развития каждого ребенка для определения адек ...
Воспитание и формирование личности
Когда речь идет о специально организованной воспитательной деятельности, то обычно эта деятельность ассоциируется с определенным воздействием, влиянием на формируемую личность. Вот почему в отдельных случаях воспитание традиционно определяется как специально организуемое педагогическое воздействие ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.