Масса (от греческого μάζα) — одна из важнейших физических величин. Первоначально (XVII—XIX века) она характеризовала "количество вещества" в физическом объекте, от которого, по представлениям того времени, зависели как способность объекта сопротивляться приложенной силе (инертность), так и гравитационные свойства — вес. Тесно связана с понятиями "энергия" и "импульс" (по современным представлениям — масса эквивалентна энергии покоя). Предлагаем эро массаж в Москве для семеных пар на сайте ЭроБодио.ру
В Парижской палате мер и весов хранятся эталоны фундаментальных единиц измерения - массы (килограмм) и длины (метр). Эталон массы представляет собой гирьку из сплава платины и иридия и помещен в эту палату еще в 1889 году. Копии эталона хранятся также и в России, во ВНИИ метрологии им. Менделеева, который, собственно, и создал в 1893 году Главную палату мер и весов, предшественницу этого института.
Масса в ньютоновой механике.
Как хорошо известно, масса в ньютоновой механике обладает рядом важных свойств, и проявляется, так сказать, в нескольких обличиях:
1. Масса является мерой количества вещества, количества материи.
2. Масса составного тела равна сумме масс составляющих его тел.
3. Масса изолированной системы тел сохраняется, не меняется со временем.
4. Масса тела не меняется при переходе от одной системы отсчета к другой, в частности, она одинакова в различных инерциальных системах координат.
5. Масса тела является мерой его инертности (или инерции, или инерционности, как пишут некоторые авторы).
6. Массы тел являются источником их гравитационного притяжения друг к другу.
Обсудим более подробно два последних свойства массы.
Как мера инерции тела, масса тела выступает в формуле, связывающей импульс тела р и его скорость v:
p = mv. (1.1)
Масса входит также и в формулу для кинетической энергии тела Ек:
Eк = p2/2m = mv2/2. (1.2)
В силу однородности пространства времени импульс, и энергия свободного тела сохраняются в инерциальной системе координат. Импульс данного тела меняется со временем только под воздействием других тел:
dp/dt = F, (1.3)
где F - сила, действующая на тело. Если учесть, что по определению ускорения а
a = dv/dt, (1.4)
и учесть формулы (1.1) и (1.3), то получим
F = mа. (1.5)
В этом соотношении масса снова выступает как мера инерции. Таким образом, в ньютоновой механике масса как мера инерции определяется двумя соотношениями: (1.1) и (1.5). Одни авторы предпочитают определять меру инерции соотношениями (1.1), другие - соотношением (1.5). Для предмета нашей статьи важно лишь, что оба эти определения совместимы в ньютоновой механике.
Обратимся теперь к гравитации. Потенциальная энергия притяжения между двумя телами с массами М и m (например, Земли и камня), равна
Ug = - GMm/r, (1.6)
где G - 6,7×10-11 Н×м2кг-2 (напомним, что 1 Н = 1 кг×м×с2). Сила, с которой Земля притягивает камень, равна
Fg = - GMmr/r3, (1.7)
где радиус-вектор r, соединяющий центры масс тел, направлен от Земли к камню. (С такой же, но противоположно направленной силой камень притягивает Землю.)
Из формул (1.7) и (1.5) следует, что ускорение тела, свободно падающего в гравитационном поле, не зависит от его массы. Ускорение в поле Земли обычно обозначают g:
G = Fg/m = - GMr/r3. (1.8)
Как нетрудно оценить, подставив в формулу (1.8) значения массы и радиуса Земли (Мз " 6×1024 кг, Rз " 6,4×106 м), g " 9,8 м/с2.
Впервые универсальность величины g была установлена Галилеем, который пришел к выводу, что ускорение падающего шара не зависит ни от массы шара, ни от материала, из которого он сделан. С очень высокой степенью точности эта независимость была проверена в начале XX в. Этвешем и в ряде недавних экспериментов. Независимость гравитационного ускорения от массы ускоряемого тела в школьном курсе физики обычно характеризуют как равенство инертной и гравитационной массы, имея при этом в виду, что одна и та же величина m входит как в формулу (1.5), так и в формулы (1.6) и (1.7).
Понятия числа
Преподавание вопросов связанных с развитием учения о числе учитель строит таким образом, чтобы ясна была связь понятий равенства, сумма и произведение, с одной стороны, и понятие числа, с другой. Таким образом, для того чтобы новые числа были равноправными, необходимо введение определения: понятие ...
Семья как субъект социализации
Социализация - это исторически обусловленный процесс, во время которого дети воспринимают и усваивают определенную систему норм, ценностей, знаний данной культуры. Социализация как явление и функция общества носит противоречивый, сложный, разнонаправленный характер. Она осуществляется как целенапра ...
Характеристика математического образования на рубеже XIX–XX веков
Общее состояние математического образования во второй половине XIX - начале XX в. можно охарактеризовать следующим образом: • преподавание математики в начале рассматриваемого периода носило контекстный (а точнее - практико-ориентированный) характер; • к концу XIX века произошло осознание необходим ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.