По содержанию задачи классифицируют на: «задачи на движение», «задачи на части», «задачи на проценты» и т.д. внутри каждого типа в зависимости от логической структуры задачи разделяют виды задач. Так, например, различают вид задач на встречное движение в одну сторону и движение в противоположные стороны, различают задачи на нахождение части числа и нахождение числа по заданной его части, нахождение соотношения чисел, различают задачи на нахождение нескольких процентов числа, нахождение числа по его проценту, нахождение процентного отношения или выражение частного в процентах.
(Методика работы над задачами подобной классификации будет рассмотрена ниже).
По характеру требований выделяют следующие группы задач:
задачи на вычисление;
задачи на построение;
задачи на доказательство;
задачи текстовые;
задачи комбинаторного характера.
Пример задачи на вычисление:
Среди людей 3% левшей и 7% людей, не подверженных морской болезни. В школе учится 1200 учащихся. Сколько среди них может быть левшей и не подверженных морской болезни?
Пример задачи на построение:
Построить равнобедренный треугольник по боковой стороне и углу при основании.
Пример задачи на доказательство:
Докажите, что в любом треугольнике сумма трех высот меньше периметра треугольника.
Пример задачи текстовой:
За 9 часов по течению реки теплоход проходит тот же путь, что за 11 часов против течения. Найдите собственную скорость теплохода, если скорость течения реки 2 км/ч.
Пример задачи комбинированного характера:
Постройте треугольник по двум сторонам и углу между ними и вычислите его площадь.
Г.В. Дорофеев делит задачи на два типа:
задачи, в которых речь идет о некоторой реальной, а более точно, о реализованной жизненной ситуации;
задачи потенциального характера, в которых жизненную ситуацию требуется сконструировать, смоделировать, выяснить условия, при которых она реализована.
Приведенные классификации позволяют учителю представить себе проблемы, связанные с методикой обучения учащихся решению задач.
Центральное место в формировании у учащихся 1 – 6 классов умение решать текстовые задачи должно занимать обучение общим приемам работы над такими задачами, причем оно должно строиться с учетом перехода от арифметического способа решения к алгебраическому.
Детское словотворчество
Для нас очевидно, что большую часть слов ребенок заучивает путем подражания: "Дай-дай", - обращается к годовалому сынишке мать и берет у него из рук игрушку; "дай-дай" - повторяет малыш. "Киса, это - киса",- показывает на кошку взрослый; "ки-и" - как эхо, отз ...
Работа с родителями
Воспитание детей в современном мире является предметом особой заботы. Его успех определяется единством, согласованностью и активной позицией всех субъектов образовательного процесса - педагогов, детей и родителей. Очень важным для формирования системных знаний о труде взрослых являются личный приме ...
Научно-исследовательская работа
Преддипломная педагогическая практика занимает важное место в научно-исследовательской работе будущих инженеров педагогов. Она создает условия для практического применения знаний по специальным предметам, по всем психолого-педагогическим дисциплинам. Во время практики присутствовали две формы НИРС. ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.