Поставим найденное выражение для а в уравнение (3):
· х = s.
Так как, очевидно, s не равно 0, то можно обе части полученного уравнения разделить на s. Тогда найдем: х = 48.
Проверка решения.
Итак, мы нашли, что плот проплывет расстояние между пристанями за 48 ч. Следовательно, его скорость, равная скорости течения реки, равна км/ч. Скорость же лодки по течению равна
км/ч, а против течения
км/ч. Для того, чтобы убедиться в правильности решения, достаточно проверить, будут ли равны собственные скорости лодки, найденные двумя способами:
от скорости лодки по течению отнять скорость течения реки,
т.е. -
;
к скорости лодки против течения реки прибавить скорость течения реки,
т.е. +
.
Произведя вычисления, получаем верное равенство:
=
.
Значит, задача решена правильно.
Исследование задачи.
В данном случае этот этап решения не нужен.
Ответ:
плот проплывет расстояние между пристанями за 48 ч.
Анализ решения.
Мы свели решение этой задачи к решению системы трех уравнений с четырьмя неизвестными. Однако найти-то надо было нам лишь одно из этих неизвестных. Поэтому, естественно, возникает мысль, что проведенное решение не самое удачное, хотя и достаточно простое. Можно предложить другое решение.
Зная, что лодка проплыла расстояние АВ по течению реки за 6 ч, а против – за 8 ч, найдем, что в 1 ч лодка, идя по течению, проходит часть этого расстояния, а против течения
. Тогда разность между ними (
-
=
) есть удвоенная часть расстояния АВ, проплываемая плотом за 1 ч. Значит. Плот за 1 ч проплывет
часть расстояния АВ, следовательно, все расстояние АВ он проплывет за 48 ч.
При таком решении не понадобилось составлять систему уравнений. Однако, несомненно, это решение сложнее приведенного выше, хотя бы потому, что не всякий догадается найти разность скоростей лодки по течению и против течения реки. Часто эту разность принимают не за удвоенную часть расстояния АВ, проплываемую плотом за 1 ч, а за скорость плота.
Таким образом, структура процесса решения задачи зависит в первую очередь от характера задачи и, конечно, от того, какими знаниями и умениями обладает решающий задачу.
Приведенная выше схема решения задач является лишь примерной. При фактическом решении указанные там этапы обычно не отделены друг от друга, а переплетаются между собой. Так, в процессе анализа задачи обычно производится и поиск решения. При этом полный пан решения устанавливается не до осуществления решения, а в процессе. Тогда поиск решения ограничивается лишь нахождением идеи решения. Порядок этапов также иногда может меняться.
Инновационные подходы к организации обучения
В данном параграфе мы должны выяснить, какие существуют инновационные подходы к организации обучения и какова их сущность, познакомимся с современными инновационными технологиями, применяемыми в профессиональных учебных заведениях. Наиболее важные элементы образования пришли к нам из седой древност ...
Изучение уровня развития координации движений в танцевальной деятельности у
детей старшего дошкольного возраста
На шестом году жизни ребёнок физически крепнет, становиться подвижным, успешно овладевает основными движениями, у него хорошая координация движений при ходьбе, беге, прыжках. Совершенствуются процессы нервной высшей деятельности: развивается способность анализировать, обобщать, делать простейшие ум ...
Выявления уровня сформированности речевых умений на констатирующем этапе
эксперимента
Основными задачами констатирующего этапа эксперимента является выявление сформированности устной и письменной речи учащихся по следующим показателям: 1) полнота ответа. 2) умение оперировать понятиями. 3) умение обосновать свою точку зрения. Для этого детям предложили письменно задания на карточках ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.