Итак, весь процесс решения задачи можно разделить на восемь этапов:
1-й этап – анализ задачи;
2-й этап – схематическая запись задачи;
3-й этап – поиск способа решения задачи;
4-й этап – осуществление решения задачи;
5-й этап – проверка решения задачи;
6-й этап – исследование задачи;
7-й этап – формулирование ответа задачи;
8-й этап – анализ решения задачи.
Приведенная схема дает лишь общее представление о процессе решения задач как о сложном и многоплановом процессе. Приведем пример решения задачи, показав конкретно этот процесс.
Лодка прошла по течению реки расстояние между двумя пристанями за 6 ч, а обратный путь она совершила за 8 ч. За сколько времени пройдет расстояние между пристанями плот, пущенный по течению реки?
Анализ задачи.
В задаче речь идет о двух объектах: лодка и плот. Лодка имеет какую-то собственную скорость, а река, по которой плывет и лодка, и лот, имеет определенную скорость течения. Именно поэтому лодка совершает путь между пристанями по течению реки за меньшее время (6 ч), чем против течения (8 ч). Но эти скорости (собственная скорость лодки и скорость течения реки) в задаче не даны (они неизвестны), так же как неизвестно расстояние между пристанями. Однако требуется найти не эти неизвестные скорости и расстояния, а время, за которое плот проплывет неизвестное расстояние между пристанями.
Схематическая запись задачи.
Поиск способа решения задачи.
Нужно найти время, за которое плот проплывает расстояние между пристанями А и В. Для того чтобы найти это время, надо знать расстояние АВ и скорость течения реки. Оба они неизвестны, поэтому обозначим расстояние АВ буквой s (км), а скорость течения реки примем равной а км/ч. Чтобы связать эти неизвестные с данными задачи (время движения лодки по и против течения реки), нужно еще знать собственную скорость лодки. Она тоже неизвестна, положим, что она равна V км/ч. Отсюда естественно возникает план решения, заключающийся в том, чтобы составить систему уравнений относительно введенных неизвестных.
Осуществление решения задачи.
Итак, пусть расстояние АВ равно s км, скорость течения реки а км/ч, собственная скорость лодки V км/ч, а искомое время движения плота на пути в s км равно х ч. Тогда скорость лодки по течению реки равна (V + a) км/ч. За 6 ч лодка, идя с этой скоростью, прошла путь АВ в s км. Следовательно,
6 (V + a) = s
Против течения эта лодка идет со скоростью (V - a) км/ч и путь АВ в s км она пройдет за 8 ч, поэтому
8 (V - a) =s
Наконец, плот, плывя со скоростью а км/ч, покрыл расстояние s км за х ч, следовательно,
ах = s
Уравнения (1), (2), (3) образуют систему уравнений относительно неизвестных s, а, V и х. Так как требуется найти лишь х, то остальные неизвестные постараемся исключить.
Для этого из уравнений (1) и (2) найдем:
V + а = , V – a =
.
Вычитая из первого уравнения второе, получим:
2а = -
, отсюда а =
.
Методика обследования уровня сформированности пересказа у детей дошкольного
возраста с ОНР III уровня
Наше экспериментальное исследование, проводилось на базе дошкольного образовательного учреждения комбинированного типа №55. Эксперимент проводился с 4 детьми старшей группы №6 с общим недоразвитием речи. Для обследования использования традиционных и нетрадиционных методов пересказа, при обучении де ...
Обучение младших школьников грамотному каллиграфическому письму
Как сделать так, чтобы количество ошибок уменьшалось, а письмо стало бы осознанным и грамотным? Этот вопрос волнует всех учителей начальных классов и учителей русского языка. Хорошо, когда ребенку «дано» от Бога: правила чувствует интуитивно и пишет правильно. Но таких ведь единицы. Больше детей, к ...
Моделирование как средство формирования системных
знаний о труде взрослых у детей дошкольного возраста
Исследователи (Л.А. Венгер, Г.А. Глотова) отмечают, что основы моделирования закладываются в дошкольном возрасте, вырастая из замещений в игре и продуктивных видах деятельности детей (рисование, конструирование и т.д.), однако дошкольники осваивают лишь основы моделирования, что проявляется в умени ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.