Особое внимание следует уделять проверке решения уравнения. Учащиеся должны четко знать, усвоить последовательность и смысл действий, выполняемых при проверке: найденное число подставляют вместо буквы в выражение, затем вычисляют значение этого выражения и, наконец, сравнивают его с заданным значением или с вычисленным значением выражения, стоящего в другой части уравнения. Если получаются равные числа, значит, уравнение решено верно.
Дети могут выполнять проверку устно или письменно, но при этом всегда должны быть четко выделены основные ее звенья: подставляем…, вычисляем…, сравниваем…
Методика обучения решению текстовых задач
Традиционная школа.
Уравнения используются для решения задач. Существует правило составления уравнения:
Выясняется, что известно, что неизвестно.
Обозначение неизвестного за х.
Составление уравнения.
Решение уравнения.
Полученное число истолковывается в соответствии с требованием задачи.
Необходимым требованием для формирования умения решать задачи с помощью уравнений является умение составлять выражения по их условиям. Поэтому вводится запись решения задач в виде выражения. Учащиеся упражняются в объяснении смысла выражений, составленных по условию задачи; сами составляют выражения по заданному условию задачи, а также составляют задачи по их решению, записанному в виде выражений.
Одним из самых трудных моментов является запись задачи в виде уравнения, поэтому вначале при составлении уравнения широко используются средства наглядности: рисунки, схемы, чертежи.
Для формирования у учащихся умения решать задачи алгебраическим способом необходимо, чтобы они могли решать уравнения, составлять выражения по задаче и осознавать сущность процесса “уравнивания неравенств”, т.е. преобразования неравенства в уравнение. Уже на первых уроках дети, сравнивая два множества, устанавливают, в каком из них содержится больше элементов и что нужно сделать, чтобы в обоих множествах было одинаковое их количество.
Вместе с тем возможности использования алгебраического метода решения текстовых задач в начальных классах традиционной школы ограничены, поэтому арифметический способ остается в традиционной школе основным.
Система РО.
Сначала учитель читает задачу для общего ознакомления, а затем вновь переходит к чтению, но “по частям”. Учитель (и только учитель!) читает такую часть текста, которая позволяет ребенку нарисовать элемент будущей схемы, затем следующие часть – и опять дети изображают часть схемы, и т.д. Начертив схему, дети должны заменить буквой (х, y, z) неизвестную величину, после чего приступать к анализу отношений между известными и неизвестными величинами.
Схема, которую дети составят к данной задаче, фактически является моделью (обратите внимание на то, что на схеме всегда отсутствует наименование), т.к. с ее помощью может быть решена не только данная задача, а целый класс частных задач. Моделирование (с помощью сначала схем, а затем буквенных формул) как учебное действие служит средством выделения отношений при анализе условий конкретных задач, а сама графическая или (и) беквенно-знаковая модель является средством фиксации выделенных отношений (см. приложении ).
Итак, процесс решения текстовой задачи с буквенными данными в течение первых трех лет мы будем осуществлять в семь этапов.
I этап – это перевод условия задачи в графическую модель, т.е. в схему. Кстати, схема, в отличие от чертежа, не требует, во-первых, специальных чертежных инструментов, и, во-вторых, точного соблюдения заданных отношений. Схема может выполняться от руки, указывать и отображать заданные отношения;
II этап – это преобразование одной графической модели в другую. Этот этап может быть пропущен, если необходимости в преобразовании нет изначально, либо она отпала в связи со свернутостью действия;
III этап – составление буквенно-знаковой модели (формулы), т.е. составление уравнения.
Когда ребенок переходит от схемы к составлению уравнения, то бывают, при правильно построенной схеме, ошибки в описании отношений (заданных через схему) в знаковой форме, т.е. с помощью уравнения. Чтобы предупредить эти ошибки, нужно использовать те значки, которые мы использовали, когда работали над переходом от текста к схеме, от схемы к преобразованной схеме и от нее к знаковой форме. Это были вспомогательные значки – “дорожки”.
Например:
“В три магазина привезли а кг. печенья, во второй – на в кг больше, чем в первый, а в третий – на с кг меньше, чем во второй. Сколько кг печенья привезли в каждый магазин?”
Методы организации внеурочной и внеклассной музыкальной деятельности
Программа внеурочной и внеклассной музыкальной деятельности предполагает свободный выбор подростками деятельности совпадающей с его интересами и потребностями. Вести к цели музыкального образования которое является общей независимо от её достижения. Урок внеклассного занятия, лекция, кружок. Любая ...
Коллективные и индивидуальные подвижные игры
Различные игры используются специалистами, ведущими внешкольную работу с детьми и подростками для организации их досуга. Игра с давних пор была неотъемлемой частью жизни человека, использовалась с целью воспитания и физического развития подрастающего поколения. В педагогической практике используютс ...
Общие положения методики развития речи на уроках русского языка
Речь человека – один из важнейших показателей уровня его культуры и общей грамотности. В круг основных задач современной российской школы входит научить учащихся правильному, точному, свободному от излишеств языку. Также школа должна прививать умение мыслить логично и объективно, и основным средств ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.