Сравнительный анализ методики ознакомления сравенствами

Страница 10

Особое внимание следует уделять проверке решения уравнения. Учащиеся должны четко знать, усвоить последовательность и смысл действий, выполняемых при проверке: найденное число подставляют вместо буквы в выражение, затем вычисляют значение этого выражения и, наконец, сравнивают его с заданным значением или с вычисленным значением выражения, стоящего в другой части уравнения. Если получаются равные числа, значит, уравнение решено верно.

Дети могут выполнять проверку устно или письменно, но при этом всегда должны быть четко выделены основные ее звенья: подставляем…, вычисляем…, сравниваем…

Методика обучения решению текстовых задач

Традиционная школа.

Уравнения используются для решения задач. Существует правило составления уравнения:

Выясняется, что известно, что неизвестно.

Обозначение неизвестного за х.

Составление уравнения.

Решение уравнения.

Полученное число истолковывается в соответствии с требованием задачи.

Необходимым требованием для формирования умения решать задачи с помощью уравнений является умение составлять выражения по их условиям. Поэтому вводится запись решения задач в виде выражения. Учащиеся упражняются в объяснении смысла выражений, составленных по условию задачи; сами составляют выражения по заданному условию задачи, а также составляют задачи по их решению, записанному в виде выражений.

Одним из самых трудных моментов является запись задачи в виде уравнения, поэтому вначале при составлении уравнения широко используются средства наглядности: рисунки, схемы, чертежи.

Для формирования у учащихся умения решать задачи алгебраическим способом необходимо, чтобы они могли решать уравнения, составлять выражения по задаче и осознавать сущность процесса “уравнивания неравенств”, т.е. преобразования неравенства в уравнение. Уже на первых уроках дети, сравнивая два множества, устанавливают, в каком из них содержится больше элементов и что нужно сделать, чтобы в обоих множествах было одинаковое их количество.

Вместе с тем возможности использования алгебраического метода решения текстовых задач в начальных классах традиционной школы ограничены, поэтому арифметический способ остается в традиционной школе основным.

Система РО.

Сначала учитель читает задачу для общего ознакомления, а затем вновь переходит к чтению, но “по частям”. Учитель (и только учитель!) читает такую часть текста, которая позволяет ребенку нарисовать элемент будущей схемы, затем следующие часть – и опять дети изображают часть схемы, и т.д. Начертив схему, дети должны заменить буквой (х, y, z) неизвестную величину, после чего приступать к анализу отношений между известными и неизвестными величинами.

Схема, которую дети составят к данной задаче, фактически является моделью (обратите внимание на то, что на схеме всегда отсутствует наименование), т.к. с ее помощью может быть решена не только данная задача, а целый класс частных задач. Моделирование (с помощью сначала схем, а затем буквенных формул) как учебное действие служит средством выделения отношений при анализе условий конкретных задач, а сама графическая или (и) беквенно-знаковая модель является средством фиксации выделенных отношений (см. приложении ).

Итак, процесс решения текстовой задачи с буквенными данными в течение первых трех лет мы будем осуществлять в семь этапов.

I этап – это перевод условия задачи в графическую модель, т.е. в схему. Кстати, схема, в отличие от чертежа, не требует, во-первых, специальных чертежных инструментов, и, во-вторых, точного соблюдения заданных отношений. Схема может выполняться от руки, указывать и отображать заданные отношения;

II этап – это преобразование одной графической модели в другую. Этот этап может быть пропущен, если необходимости в преобразовании нет изначально, либо она отпала в связи со свернутостью действия;

III этап – составление буквенно-знаковой модели (формулы), т.е. составление уравнения.

Когда ребенок переходит от схемы к составлению уравнения, то бывают, при правильно построенной схеме, ошибки в описании отношений (заданных через схему) в знаковой форме, т.е. с помощью уравнения. Чтобы предупредить эти ошибки, нужно использовать те значки, которые мы использовали, когда работали над переходом от текста к схеме, от схемы к преобразованной схеме и от нее к знаковой форме. Это были вспомогательные значки – “дорожки”.

Например:

“В три магазина привезли а кг. печенья, во второй – на в кг больше, чем в первый, а в третий – на с кг меньше, чем во второй. Сколько кг печенья привезли в каждый магазин?”

Страницы: 5 6 7 8 9 10 11 12 13

Смотрите также:

Характеристика Муниципального Дошкольного Образовательного Учреждения детского сада № 9 комбинированного вида
Муниципальное дошкольное образовательное учреждение детский сад №9 комбинированного вида существует 35 лет. Функционируют 11 групп. Списочный состав 250 человек, в том числе 85 детей раннего возраста и 165 дошкольного. В среднем детский сад посещает 200 – 210 человек. Имеется спортивный и тренажерн ...

Организация практических занятий по развитию лексических навыков речи
Поскольку в данной работе исследуется и изучается обучение лексике как основному компоненту речевой деятельности, то целью в ходе практики явилось выявление наиболее эффективных приёмов обучения лексике иноязычной речи. Объектом исследования был процесс обучения лексике как главному компоненту рече ...

Анализ программы дошкольного образования
В программах дошкольного образования большое внимание уделяется элементам этнопедагогики. в ходе исследования была проанализирована программа «детство» т.и. бабаевой, а.г. гогоберидзе, з.а. михайловой. Цель исследования: выявить использование элементов этнопедагогики в реализации программ дошкольно ...

Приёмы и методы запоминания

Приёмы и методы запоминания

На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.

Категории

Copyright © 2024 - All Rights Reserved - www.newlypedagog.ru