Традиционно же все делается наоборот: сначала дети говорят, обсуждают, как выполнять задание, а потом его делают, а в этой системе обучения нужно сначала сделать (осуществить практическое действие), а затем обсуждать, как это сделали и как научить других делать то, что умеешь делать сам. Повторю, это коренное и принципиальное отличие подхода к обучению в системе РО.
Итогом работы над данной темой является составление справочника ошибок, в который как раз включаются все возможные ошибки, которые были или могут быть (!) у детей. Фиксируя их в справочнике любым удобным для детей способом, необходимо каждый раз возвращаться к вопросам о происхождении этих ошибок, а также к способам их обнаружения и исправления, что является необходимым этапом дальнейшего предупреждения этих ошибок.
Переход от неравенства к равенству и наоборот
Основная задача в том, чтобы дети смогли найти три способа уравнивания:
1) путем увеличения одной (меньшей) величины до ее равенства с другой (большей), т.е. с помощью сложения:
А А
В После уравнивания В С
А>В А = В + С
2) путем уменьшения одной (большей) до ее равенства с другой меньшей, т.е. с помощью вычитания:
А А
В После уравнивания В В С
А>В А – С = В
3) путем уменьшения одной и увеличения другой на одну и ту же величину:
А А
В После уравнивания С С К
А>В В К
А – К = В + К
Третий способ предполагает свободное владение первыми двумя.
Итак, два первых способа уравнивания величин являются основными.
Постановку задачи, требующей уравнивания величин, начнем со сказочного сюжета о Незнайке.
Прочитайте ту часть сказки, в которой рассказывается о том, как Винтик и Шпунтик изобрели автомобиль, который работал на газированной воде с сиропом (текст приведен в учебнике).
Результатом обсуждения возможных причин остановки машины станет постановка задачи, требующей уравнивания величин.
Нужно в бак налить столько сиропа, сколько его не хватает, чтобы бак стал полным.
Налейте воды (подкрашенной!) в две банки так, чтобы одна из них была полная (но не до самого края, чтобы можно было при необходимости долить немного воды), а вторая заполнена примерно на 1/3. Объясните, сколько сиропа должно быть и сколько осталось. Условие работы “двигателя” – полная банка.
Теперь вместе с детьми переведем эту задачу на язык математики:
Есть две неравные величины (объем воды в банках). Изобразим их, обозначив буквами (например А и В), и запишем формулу:
А
В
или А
А>В В
В сюжетной задаче о баке нам нужно узнать, сколько сиропа нужно добавить в неполную банку, чтобы машина снова могла ехать. Эта же проблема на языке математики выглядит так: нужно уровнять величины так, чтобы меньшая величина В стала равна большей величине А.
Как это можно сделать?
Сначала дети выполняют практическое действие, пытаясь в неполную банку долить воды до того же уровня, что и в первой банке, т.е. долить воды столько, сколько ее не хватало до полной банки. Проще говоря, проблема сначала выглядит так: что нужно сделать, чтобы в неполной банке воды стало столько же, сколько в полной банке? Ответ не заставит себя ждать, и дети тут же скажут, что воду нужно долить. Вы непременно выполняете практическое действие, доливая воды значительно меньше, чем нужно (или, наоборот, больше).
Особенности изучения кремниевой кислоты и ее солей, связанные с
экологическими проблемами силикатного производства
Вашему вниманию представляется урок на тему: «Кремниевая кислота. Соли кремниевой кислоты», наполненный экологическим содержанием, способствующий развить экологические знания у школьников средней школы, определить взаимосвязь между изучаемым объектом и окружающей средой, а также показать роль уроко ...
Характеристика гуманных отношений и путей их развития в психолого-педагогической
литературе
Сегодня, когда мы забываем слова "доброта, милосердие, сострадание, сорадование", а все чаще видим, слышим о подростковой преступности и детской жестокости, злобе, зависти в детской среде, мы невольно ужасаемся, пытаясь понять суть происходящего. Тогда мы оглядываемся в поисках средств об ...
Концептуальные основы проблемного обучения
Концепция проблемного обучения, как и любая другая педагогическая концепция, при ее формулировке неизбежно раскрывает субъективные особенности сознания, предпочтения педагога или исследователя. Именно поэтому в педагогической литературе даются различные определения этого понятия, в той или иной мер ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.