Сравнительный анализ методики ознакомления сравенствами

Страница 5

Для выполнения каждого из данных типов заданий хорошо использовать группу из 3-4 детей: один действует с предметами, молча демонстрируя способ их сравнения, другой описывает результат сравнения с помощью схемы, третий на основании либо схемы, либо увиденного способа сравнения величин обозначает их буквами и записывает формулу (равенства или неравенства), используя знаки “=”, “>” и “<”, а четвертый выступает контролером, при этом разные группы могут работать с разными величинами.

Обсуждение итогов работы каждой группы может происходить следующим образом: каждая группа называет величину, с которой она работала. Остальные дети по схеме и формуле определяют, какие предметы могла сравнивать группа и какие ошибки при сравнении, при составлении схемы или записи формулы она могла допустить.

После такой проверки можно предложить группам, парам или отдельным детям (по выбору) придумать свои задания на сравнение или восстановление величин (с которой она работала) по схеме и формуле. Придумав задание, каждый должен выполнить свое задание так, как он хотел бы, чтобы его выполнили другие, а затем организовать “аукцион” заданий, при котором каждый выбирает понравившееся ему (из придуманных детьми) задание.

Предложенные задания можно классифицировать и по другому основанию: большинство из перечисленных заданий позволяет детям познакомиться с основными свойствами равенства и неравенств, однако названий рассматриваемых свойств детям сообщать не нужно. Главное, что дети должны понять, что иногда непосредственного сравнения величин производить не нужно, чтобы узнать, в каком отношении они находятся, т.е. вывод можно сделать, опираясь на результаты сравнения этих величин с другими.

Так, если А=В, то В=А (свойство симметричности), т.е. А сравнили с В, то нет необходимости вновь брать в руки предметы, чтобы сравнивать В и А. Если же А=В, а В=С, то нет необходимости А и С сравнивать непосредственно, так как А наверняка будет равно С, — это свойство транзитивности равенства. Аналогично можно рассмотреть транзитивность неравенства: если А>В, а В>С, то А>С, и если А<В, а В<С, то А<С.

Тот факт, что буквой может быть обозначена любая величина, дает возможность приступить к использованию дошкольного опыта ребенка, а именно: после составления одной из формулы А>В или А<В предлагать детям подбирать вместо букв подходящие числа. Здесь слово “подходящие” относится как к самому отношению (больше или меньше), так и к дошкольному опыту ребенка, что дает возможность каждому ребенку продемонстрировать свою дошкольную подготовку и при этом быть успешным при любом объеме дошкольных умений.

Переход от букв к подходящим числам дает возможность и для обратных действий, при которых дети восстанавливают буквенные формулы с помощью числовых. Этот обратный переход можно задать следующим образом: “Дети в другом классе вместо букв в формуле подобрали подходящие числа. Вот что они записали: 7<8. Как вы думаете, какая была формула?” Дайте возможность обсудить это в группах.

В дополнение к указанным заданиям необходимо предложить выполнить задание с “ловушкой”:

- поставить двое весов: на одни весы положить одинаковые по массе предметы и на другие тоже. Записать либо М1=М2 и М3=М4, либо А=В и С=Д.

Возникает вопрос: можно ли, не взвешивая самих предметов, сравнить массы А и Д (а следовательно, и В и Д, А и С, В и С)? Если ребенок понимает свойство транзитивности, то он должен утверждать, что такого сравнения без взвешивания сделать нельзя, массы А и Д могут оказаться как одинаковыми, так и разными.

Если ребенок обращает внимание только на знаки равенства, а связи между сравниваемыми величинами не видит, то его вывод будет неверным, т.е. он будет утверждать: А=Д. Тогда и возникает вопрос: как не ошибиться? Для этого следует сделать две записи и сравнить их.

I II

А=В, а В=Д А=В, а С=Д

Сравнить

А и Д А и Д

Первая позволяет без непосредственного сравнивания сделать вывод А=Д, а вторая нет: может оказаться А>Д, А<Д, А=Д, все будет зависеть именно от отношения между А и С.

Схема даст возможность обосновать свою точку зрения, а затем вновь вернуться к равенствам, по которым можно определить, во-первых, сколько величин участвует в сравнении и, во вторых, как связаны эти величины между собой. Могут появиться следующие записи и схемы (см. приложение ).

Важно помнить, что обсуждение данного материала следует начинать не до того, как дети собираются чертить схемы, а после того, как схемы к формулам готовы.

Страницы: 1 2 3 4 5 6 7 8 9 10

Смотрите также:

Комплекс заданий направленный на реализацию преемственности в математическом воспитании
Примерный план-сетка проведения обучающих и развивающих математических игр Таблица. 1 Квартал Сентябрь Октябрь Ноябрь 1 2 3 4 I Диагностика: – количественный счет; – сравнение смежных чисел; – часть и целое (дроби); – сложение в пределах 10; – вычитание в пределах 10 Д/и «Домино». Цель: развитие ло ...

Методика использования комплекса через систему дидактических игр
Дидактические игры — это не просто заполнение свободного времени детей, а спланированный и целенаправленный педагогический прием для расширения и закрепления полученных ими знаний. В процессе дидактических игр дети учатся на практике самостоятельно применять полученные на занятиях знания об окружаю ...

Сравнительный анализ фразеологизмов английского языка с именами собственными с их эквивалентами в русском языке
Фразеологические единицы, в состав которых входят библеизмы такого вида существуют в языках всех стран, история которых в той или иной мере связана с христианством. Однако никакой другой язык не испытал на себе такого заметного влияния Библии, как английский. В течение столетий Библия была наиболее ...

Приёмы и методы запоминания

Приёмы и методы запоминания

На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.

Категории

Copyright © 2024 - All Rights Reserved - www.newlypedagog.ru