Х1 = а1
Х2 = в21Х1 + а2
Х3 = в31Х1 +в32Х2 + а3,
Х1, Х2 и Х3 – изучаемые проявления процесса; а1, а2 и а3 – скрытые или малозначимые факторы; коэффициенты “в” – есть частные коэффициенты регрессии.
Если отсутствует какая-либо связь в причинной модели, то соответствующий коэффициент будет равен нулю. Например, если отсутствует связь Х23, то в = 0, следовательно r23= 0.
Количество измеряемых связей в причинных моделях практически неограниченно. Границы модели определяются системой структурных уравнений, образующих треугольную матрицу произвольного размера.
Для примера рассмотрим причинную модель, объясняющую зависимую переменную положения учащегося в системе внутриколлективных отношений. Обозначим ее “а6”. Эта переменная должна объясняться ограниченным количеством показателей: а1 – коллективистской направленностью личности; а2 – интересом к определенному кругу предметов; а3 – отношениями в коллективе; а4 – умениями, значимыми для классного коллектива; а5 – личностными качествами каждого ученика.
Система уравнений имеет следующий вид:
а1 = Р11а1
а2 = Р21а1 + Р22а2
а3 = Р31а1 + Р32а2 + Р33а3
а4 = Р41а1 + Р42а2 + Р43а3 +Р44а4
а5 = Р51а1 + Р52а2 + Р53а3 + Р54а4 + Р55а5
Граф причинной модели может быть изображен, как на следующем рисунке:
Вычисление коэффициентов позволяет сравнить причинные связи с экспериментально полученными данными и тем самым определить степень адекватности модели. (Более подробно методы причинного анализа изложены в следующих работах: Тинтнер Г. Введение в эконометрику. – М., 1965; Кэндол М., Стюарт А. Статистические выводы и связи. – М., 1973).
Используя различные виды причинного анализа, мы можем проследить соотносительные силы влияния каждой переменной (каждого показателя) на исследуемый нами процесс. Помимо этого определяется распределение влияния по всем связям.
К примеру, влияние а1 на а6 определяется величиной Рij, а совместное воздействие всех измеряемых величин корреляцией rij. В этом случае разность rij – Pij будет выражать меру влияния а1, а2 .а5 на а6. Отсюда из оценочных уравнений можно вычислить опосредованное влияние каждой отдельной связи.
В общем случае модель причинной структуры может включать любое количество исследуемых нами показателей и вполне описывается предлагаемой нами системой уравнений.
“О мир пойми! Певцом – во сне – открыты
Закон звезды и формула цветка”.
М.Цветаева
Простейший метод прогнозирования, использование точечной диаграммы, непригоден, когда обработке подлежит информация, полученная от очень большого количества испытуемых. В этом случае линия регрессии заменяется математическим уравнением – будем называть его прогностическим. Это уравнение имеет следующий вид:
Yi = A + B Xi , где
– Yi – численное выражение прогнозируемой переменной для испытуемого с № i
– Xi – то же для прогнозирующей переменной
– А, В – математически полученные постоянные, одни и те же в рамках одного исследования.
Выше рассматривался пример о связи результатов итогового школьного теста и итогового теста первого семестра. Применим к имеющейся здесь зависимости прогностическое уравнение. Так здесь:
Yi – результаты первого семестра,
Xi – результаты школьного теста.
И, допустим, что для констант А и В получены значения А=0,18 и В=0,73.
Имея чьи либо результаты школьного теста и подставив их в уравнение, можем получить предполагаемое значение для результатов теста первого семестра (0,18 + 0,73 3,5 = 2,735) (пусть = 3,5). Имея истинные результаты для тестов первого семестра, мы позже сможем сравнить их с предсказанными и убедиться в том, что правильно использовали уравнение прогноза.
Предсказанные значения никогда абсолютно точно не совпадают с теми, которые получаются на самом деле. Любой прогноз предполагает наличие ошибки, которая известна как стандартная ошибка оценки. Стандартная ошибка показывает величину несовпадения предсказанного результата с истинным. Малое её значение свидетельствует о высокой достоверности прогноза. Величина стандартной ошибки уменьшается если при прогнозировании использовать больше данных.
“На берегу канала
Дрожат тростник и сумрак,
А третий – серый ветер”.
Гарсия Лорка
Мультипольное разложение
Мультипольное разложение – прием, позволяющий искать зависимость одного прогнозируемого параметра от нескольких прогнозирующих для более успешного прогнозирования. Вернемся к рассмотренному выше примеру. Ранее мы установили наличие сильной позитивной связи между результатами последнего школьного тестирования и первого семестрового в колледже. Как оказалось, результаты теста первого семестра находятся в позитивной связи с результатами еще двух тестов. С результатами раздела “Вербальное мышление” вступительного теста он связан коэффициентом корреляции 0,61, а с результатами раздела “Математика” этого же теста – с коэффициентом 0,51.
Мультипольное разложение позволяет сделать прогноз о результатах первого семестра на основе всех трех имеющихся прогнозирующих факторов. Формула мультипольного разложения похожа на формулу простейшего прогностического уравнения, хотя и представляется более сложной. Причина этого в том, что смысл мультипольного разложения полностью повторяет смысл прогностического уравнения. Усложнение вызвано тем, что в рассмотрение включается большее количество прогнозирующих переменных. Мультипольное разложение представляется следующей формулой:
Методические приемы, направленные на изучение законов и свойств
арифметических действий
Изучение законов и свойств арифметических действий мы рассматривали при изучении действий сложения и вычитания в концентре «Сотня». Рассмотрим, как происходило знакомство с законами и свойствами арифметических действий . Цель: воспроизведение ЗУН по порядку действий в числовом выражении, умение при ...
Трудности восприятия иноязычной речи на слух
Аудирование отнюдь не является легким видом речевой деятельности. Так как усвоение иностранного языка и развитие речевых навыков осуществляется главным образом через аудирование, то оно вызывает наибольшие трудности. Аудирование – единственный вид речевой деятельности, при котором от лица ее выполн ...
Технология и приемы развития критического мышления учащихся
В предыдущем параграфе нами были рассмотрены разнообразные определения понятия критического мышления и его характеристики. Для педагога же не менее важным является знание не только различных подходов к пониманию критического мышления, но и знание, а еще лучше владение технологией развития критическ ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.